- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Abedi, Rahebeh (1)
-
Abou_Ali, Hanan (1)
-
Alatise, Ismail (1)
-
Alemohammad, Hamed (1)
-
Dziedzorm_Asipunu, Mary (1)
-
Estes, Lyndon D (1)
-
Ha, Nguyen (1)
-
Khallaghi, Sam (1)
-
Luo, Boka (1)
-
Mai, Cat (1)
-
Song, Lei (1)
-
Wussah, Amos Olertey (1)
-
Xiong, Sitian (1)
-
Yao, Yao-Ting (1)
-
Zhang, Qi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mapping agricultural fields using high-resolution satellite imagery and deep learning (DL) models has advanced significantly, even in regions with small, irregularly shaped fields. However, effective DL models often require large, expensive labeled datasets, which are typically limited to specific years or regions. This restricts the ability to create annual maps needed for agricultural monitoring, as changes in farming practices and environmental conditions cause domain shifts between years and locations. To address this, we focused on improving model generalization without relying on yearly labels through a holistic approach that integrates several techniques, including an area-based loss function, Tversky-focal loss (TFL), data augmentation, and the use of regularization techniques like dropout. Photometric augmentations helped encode invariance to brightness changes but also increased the incidence of false positives. The best results were achieved by combining photometric augmentation, TFL, and Monte Carlo dropout, although dropout alone led to more false negatives. Input normalization also played a key role, with the best results obtained when normalization statistics were calculated locally (per chip) across all bands. Our U-Net-based workflow successfully generated multi-year crop maps over large areas, outperforming the base model without photometric augmentation or MC-dropout by 17 IoU points.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
